Sources and Formation of Atmospheric Nitrate Over China–Indochina Peninsula in Spring: A Perspective From Oxygen and Nitrogen Isotopic Compositions Based on Passive Air Samplers

Author:

Wang Xiao,Li Jun,Tian Chongguo,Zong Zheng,Liu Qilu,Jiang Hongxing,Li Tingting,Li Jing,Jiang Haoyu,Zhao Shizhen,Zhang Gan

Abstract

The formation processes and potential sources of particulate nitrate can be revealed by nitrogen (δ15N-NO3) and oxygen (δ18O-NO3) isotopes; however, the linkage and comparative information over a large scale is limited. In this work, the feasibility of using quartz wool disk passive air samplers (Pas-QW) to identify and quantify the nitrate concentrations and their isotopic compositions was demonstrated. The results of a simultaneous sampling campaign from March to June showed that the NO3 concentration was largely attributed to the development of the regional economies. The regional distribution of δ15N-NO3 values was due to the source changes. The decreasing trend of δ18O-NO3 values with latitude from south to north was mainly a combination of oxygen isotopic fractionation of the oxidant induced by natural factors and anthropogenic changes in O3 concentrations. Coal combustion (CC) and mobile sources (MS) have a significant contribution to NOx in the typical urban agglomerations, while the high contribution from biomass burning (BB) and biogenic soil emission (BS) was mainly in areas with high natural productivity and intensive agricultural activities. By allowing simultaneous monitoring at multiple sites and over extended periods, passive sampling complements existing techniques for studying nitrate aerosol, and the results can provide a reference for the spatial distribution of its sources and formation in the China–Indochina Peninsula (CICP).

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3