Influence of forest infrastructure on the responses of ecosystem services to climate extremes in the Midwest and Northeast United States from 1980 to 2019

Author:

Kicklighter David W.,Lin Tzu-Shun,Zhang Jiaqi,Chen Mengye,Vörösmarty Charles J.,Jain Atul K.,Melillo Jerry M.

Abstract

Forests provide several critical ecosystem services that help to support human society. Alteration of forest infrastructure by changes in land use, atmospheric chemistry, and climate change influence the ability of forests to provide these ecosystem services and their sensitivity to existing and future extreme climate events. Here, we explore how the evolving forest infrastructure of the Midwest and Northeast United States influences carbon sequestration, biomass increment (i.e., change in vegetation carbon), biomass burning associated with fuelwood and slash removal, the creation of wood products, and runoff between 1980 and 2019 within the context of changing environmental conditions and extreme climate events using a coupled modeling and assessment framework. For the 40-year study period, the region’s forests functioned as a net atmospheric carbon sink of 687 Tg C with similar amounts of carbon sequestered in the Midwest and the Northeast. Most of the carbon has been sequestered in vegetation (+771 Tg C) with more carbon stored in Midwestern trees than in Northeastern trees to provide a larger resource for potential wood products in the future. Runoff from forests has also provided 4,651 billion m3of water for potential use by humans during the study period with the Northeastern forests providing about 2.4 times more water than the Midwestern forests. Our analyses indicate that climate variability, as particularly influenced by heat waves, has the dominant effect on the ability of forest ecosystems to sequester atmospheric CO2to mitigate climate change, create new wood biomass for future fuel and wood products, and provide runoff for potential human use. Forest carbon sequestration and biomass increment appear to be more sensitive to heat waves in the Midwest than the Northeast while forest runoff appears to be more sensitive in the Northeast than the Midwest. Land-use change, driven by expanding suburban areas and cropland abandonment, has enhanced the detrimental heat-wave effects in Midwestern forests over time, but moderated these effects in Northeastern forests. When developing climate stabilization, energy production and water security policies, it will be important to consider how evolving forest infrastructure modifies ecosystem services and their responses to extreme climate events over time.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3