Simulating basin-scale linkages of the food-energy-water nexus with reduced complexity modeling

Author:

Bokhari Hussain H.,Najafi Ehsan,Dawidowicz Jorin,Wuchen Liushan,Maxfield Nicolas,Vörösmarty Charles J.,Fekete Balazs M.,Corsi Fabio,Sanyal Swarnali,Lin Tzu-Shun,Miara Ariel,Tuler Seth P.

Abstract

There is a rapidly growing need to communicate to the public and policymakers on the nature and impact of climate change and its associated extremes, which manifest themselves across essential Food-Energy-Water Systems (FEWS). The complexity of this nexus demands analytical tools that can capture the essence of FEWS with the climate system, which may be difficult to stage and implement from a computationally efficient point-of-view. Reduced Complexity Models (RCMs) can synthesize important facets of a system quickly and with less dependence on difficult-to-assign inputs. We report on the development of an RCM framework for the FEWS nexus, to serve as a basic research tool in facilitating parameter sensitivity experiments as well as a means to establish more insightful dialogue with stakeholders through joint scenario construction. Three stand-alone and coupled models at the basin scale have been configured using Stella Architect software to simulate: 1) major flows and storage of water, 2) power plant operations and subsequent impacts on river reaches; and 3) nitrogen (N) mobilization and transport from atmospheric and landmass sources to riverine receiving waters. The Delaware River Basin is chosen for a contemporary simulation test case. Modeled results are calibrated and validated using observed stream gauge data, indicating reliable model performance at the monthly and annual time steps (0.57 < NSE < 0.98). A set of single and multi-factor climate, technology, and policy experiments are then explored using the RCM framework. Basin-scale system sensitivities are investigated across a set of intensified climate extremes, revealing the crucial roles of sewage treatment and energy infrastructure for climate resilience, significant exacerbations as well as mitigations of thermal and N pollution under opposing climate extremes, and important tradeoffs between river temperature and electricity production that are explored with technology and policy scenarios.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3