Fate of four Different Classes of Chemicals Under Aaerobic and Anaaerobic Conditions in Biological Wastewater Treatment

Author:

Komolafe Oladapo,Mrozik Wojciech,Dolfing Jan,Acharya Kishor,Vassalle Lucas,Mota Cesar R.,Davenport Russell

Abstract

The removal mechanisms and extent of degradation of 28 chemicals (triclosan, fifteen polycyclic aromatic hydrocarbons, four estrogens, and eight polybrominated diphenyl ether congeners) in different biological treatment systems [activated sludge, up-flow anaerobic sludge blanket reactor (UASB) and waste stabilization pond (WSP)] was investigated to provide insights into the limits of engineered biological treatment systems. This was done through degradation experiments with inhibition and abiotic controls in static reactors under aerobic and anaaerobic conditions. Estrogens showed higher first order degradation rates (0.1129 h−1) under aerobic conditions with activated sludge inocula followed by low molecular weight (LMW) PAHs (0.0171 h−1), triclosan (0.0072 h−1), middle (MMW) (0.0054 h−1) and high molecular weight PAHs (HMW) (0.0033 h−1). The same trend was observed under aerobic conditions with a facultative inoculum from a WSP, although at a much slower rate. Biodegradation was the major removal mechanism for these chemicals in the activated sludge and WSP WWTPs surveyed. Photodegradation of these chemicals was also observed and varied across the group of chemicals (estrogens (light rate = 0.4296 d−1; dark = 0.3900 d−1) degraded faster under light conditions while reverse was the case for triclosan (light rate = 0.0566 d−1; dark = 0.1752 d−1). Additionally, all the chemicals were resistant to anaaerobic degradation with UASB sludge, which implies that their removal in the UASB of the surveyed WWTP was most likely via sorption onto solids. Importantly, the first order degradation rate determined in this study was used to estimate predicted effluent concentrations (PECs). The PECs showed good agreement with the measured effluent concentrations from a previous study for these treatment systems.

Funder

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3