Occurrence and toxicological assessment of selected active pharmaceutical ingredients in effluents of pharmaceutical manufacturing plants and wastewater treatment plants in Kampala, Uganda

Author:

Kayiwa R.1ORCID,Kasedde H.1,Lubwama M.1,Kirabira J. B.1,Kayondo Timothy2

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Design, Art, and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda

2. Chemistry Department, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda

Abstract

Abstract There is an increasing eco-toxicological risk associated with pharmaceuticals globally. The prevalence of six active pharmaceutical ingredients (APIs) was studied in effluents of three pharmaceutical manufacturing plants (PMPs) and two wastewater treatment plants (WWTPs) in Kampala, Uganda to ascertain the removal potentials for APIs. The APIs include atenolol, losartan, carbamazepine, sulfamethoxazole, clarithromycin, and diclofenac. The APIs were extracted using solid-phase extraction cartridges and concentrations were analyzed using a liquid chromatography-mass spectrometer system. The concentration ranges of the APIs were <limit of detection (LOD), <LOD – 4.75, <LOD – 1.37, <LOD – 1.17, and 0.28–19.55 mgL−1 for losartan, diclofenac, sulfamethoxazole, carbamazepine, and clarithromycin respectively in effluents of WWTPs, whereas in treated wastewater from PMPs concentrations were 0.00, 0.00–0.23, 5.30–7.4, 0.00–0.14, and 0.12–4.53 mgL−1 for losartan, diclofenac, sulfamethoxazole, carbamazepine, and clarithromycin respectively. The API removal efficiency of PMPs was higher than WWTPs with some APIs removed to concentrations of <LOD. The range of hazard quotients (HQs) for APIs was 0.018–0.9775000 with most of the APIs posing remarkably high environmental risks at HQs way greater than 1. Only sulfamethoxazole from the effluents of Lubigi WWTP, Bugolobi WWTP, and PMP C posed low risks with HQs of <1 at 0.018, 0.305, and 0.018 respectively. The high HQs for most APIs imply that immediate recipients are at very high toxicological risks, yet most studies have focused on the final destinations of APIs in environments where toxicological risks are often minimal due to dilution effects.

Funder

Africa Centre of Excellence in Materials, Product Development & Nanotechnology (MAPRONANO - Makerere University

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3