Affiliation:
1. Department of Mechanical Engineering, College of Engineering, Design, Art, and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
2. Chemistry Department, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
Abstract
Abstract
There is an increasing eco-toxicological risk associated with pharmaceuticals globally. The prevalence of six active pharmaceutical ingredients (APIs) was studied in effluents of three pharmaceutical manufacturing plants (PMPs) and two wastewater treatment plants (WWTPs) in Kampala, Uganda to ascertain the removal potentials for APIs. The APIs include atenolol, losartan, carbamazepine, sulfamethoxazole, clarithromycin, and diclofenac. The APIs were extracted using solid-phase extraction cartridges and concentrations were analyzed using a liquid chromatography-mass spectrometer system. The concentration ranges of the APIs were <limit of detection (LOD), <LOD – 4.75, <LOD – 1.37, <LOD – 1.17, and 0.28–19.55 mgL−1 for losartan, diclofenac, sulfamethoxazole, carbamazepine, and clarithromycin respectively in effluents of WWTPs, whereas in treated wastewater from PMPs concentrations were 0.00, 0.00–0.23, 5.30–7.4, 0.00–0.14, and 0.12–4.53 mgL−1 for losartan, diclofenac, sulfamethoxazole, carbamazepine, and clarithromycin respectively. The API removal efficiency of PMPs was higher than WWTPs with some APIs removed to concentrations of <LOD. The range of hazard quotients (HQs) for APIs was 0.018–0.9775000 with most of the APIs posing remarkably high environmental risks at HQs way greater than 1. Only sulfamethoxazole from the effluents of Lubigi WWTP, Bugolobi WWTP, and PMP C posed low risks with HQs of <1 at 0.018, 0.305, and 0.018 respectively. The high HQs for most APIs imply that immediate recipients are at very high toxicological risks, yet most studies have focused on the final destinations of APIs in environments where toxicological risks are often minimal due to dilution effects.
Funder
Africa Centre of Excellence in Materials, Product Development & Nanotechnology (MAPRONANO - Makerere University
Subject
Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献