Vegetation impacts ditch methane emissions from boreal forestry-drained peatlands—Moss-free ditches have an order-of-magnitude higher emissions than moss-covered ditches

Author:

Rissanen Antti J.,Ojanen Paavo,Stenberg Leena,Larmola Tuula,Anttila Jani,Tuominen Sakari,Minkkinen Kari,Koskinen Markku,Mäkipää Raisa

Abstract

Ditches of forestry-drained peatlands are an important source of methane (CH4) to the atmosphere. These CH4 emissions are currently estimated using the IPCC Tier 1 emission factor (21.7 g CH4 m−2 y−1), which is based on a limited number of observations (11 study sites) and does not take into account that the emissions are affected by the condition and age of the ditches. Furthermore, the total area of different kinds of ditches remains insufficiently estimated. To construct more advanced ditch CH4 emission factors for Finland, we measured CH4 emissions in ditches of 3 forestry-drained peatland areas (manual chamber technique) and amended this dataset with previously measured unpublished and published data from 18 study areas. In a predetermined 2-type ditch classification scheme, the mean CH4 emissions (±standard error) were 2.6 ± 0.8 g CH4 m−2 y−1 and 20.6 ± 7.0 g CH4 m-2 y−1 in moss-covered and moss-free ditches, respectively. In a more detailed 4-type classification scheme, the yearly emissions were 0.6 ± 0.3, 3.8 ± 1.1, 8.8 ± 3.2, and 25.1 ± 9.7 g CH4 m−2 y−1 in Sphagnum-covered, Sphagnum- and vascular plant—covered, moss-free and vascular plant-covered, and plant - free ditches, respectively. Hence, we found that Tier 1 emission factor may overestimate ditch CH4 emissions through overestimation of the emissions of moss-covered ditches, irrespective of whether they harbor potentially CH4 conducing vascular plants. Based on the areal estimates and the CH4 emission factors for moss-covered and moss-free ditches, CH4 emissions of ditches of forestry-drained peatlands in Finland were 8,600 t a−1, which is 63% lower than the current greenhouse gas inventory estimates for ditch CH4 emissions (23,200 t a−1). We suggest that the Tier 1 emission factor should be replaced with more advanced emission factors in the estimation of ditch CH4 emissions of boreal forestry-drained peatlands also in other countries than in Finland. Furthermore, our results suggest that the current practice in Finland to minimize ditch-network maintenance by ditch cleaning will likely decrease CH4 emissions from ditches, since old moss-covered ditches have very low emissions.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference58 articles.

1. Infilled ditches are hotspots of landscape methane flux following peatland re-wetting;Cooper;Ecosystems,2014

2. CH4 emissions from ditches in a drained upland blanket bog, North Wales, UK;Cooper,2013

3. CH4 emission from a hollow-ridge complex in a raised bog: The role of CH4 production and oxidation;Frenzel;Biogeochemistry,2000

4. The emission of carbon dioxide and methane from drained peatlands changed by economic use and from natural mires during the summer-fall period (on example of a region of Tomsk oblast);Glagolev;Agrokhimija,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3