Remediation of grassland subsidence and reduction of land occupation with tailings backfill technology: a case study of lead-zinc mine in Inner Mongolia, China

Author:

Chen Xinzheng,Guo Lijie,Zhou Yabo,Xu Wenyuan,Zhao Yue

Abstract

The mining industry provides essential mineral resources for human society’s development. However, this industry generates a large quantity of waste material while rapidly extracting valuable elements from ore, such as processed tailings. The existence of mined voids will cause surface subsidence, and the surface stockpiling of tailings and waste rocks occupy a large amount of land and the risk of Tailings Storage Facility (TSF) failure. This paper proposes tailings backfill technology to mitigate surface subsidence and provides an alternative disposal method for tailings generated during ore extraction. Tailings backfill technology prepares the slurry by adding a certain amount of cementitious material into the tailings and transporting it to the underground goaf through a pipeline. The backfill slurry could then gradually build up its strength during the hydration of. Cementitious material. A case study of a lead-zinc mine in the Inner Mongolia Autonomous Region of China using tailings backfill technology was introduced in detail to solve the problems of grassland collapse caused by mine excavation and environmental damage due to tailings disposal. Spread test and rheological test were carried out to study the flow characteristics of filling slurry and the uniaxial compressive strength (UCS) of backfill was tested as well. The result illustrates that the spread of the filling slurry with a solid content between 72% and 76% and cement-tailings ratio between 1:4 and 1:8 is greater than 14 cm, and the UCS of backfill is above 1 MPa. The research shows that the tailings backfill technology recycles tailings waste while mitigating surface grassland subsidence and land occupation of waste disposal. Tailings backfill technology can significantly reduce tailings discharge or even achieve no discharge. A leaching test for heavy metal element classification of the backfill sample was carried out. The results show that the heavy metal detection indicators meet the environmental protection standard requirements and will not cause secondary environmental pollution. Therefore, tailings backfill technology can realize green and efficient management of mine waste and has great application and promotion prospects.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3