Watch Out for the Tailings Pond, a Sharp Edge Hanging over Our Heads: Lessons Learned and Perceptions from the Brumadinho Tailings Dam Failure Disaster

Author:

Cheng DeqiangORCID,Cui Yifei,Li ZhenhongORCID,Iqbal JavedORCID

Abstract

A catastrophic tailings dam failure disaster occurred in Brumadinho, Brazil on 25 January 2019, which resulted in over 270 casualties, 24,000 residents evacuated, and a huge economic loss. Environmental concerns were raised for the potential pollution of water due to tailings waste entering the Paraopeba River. In this paper, a detailed analysis has been carried out to investigate the disaster conditions of the Brumadinho dam failure using satellite images with different spatial resolutions. Our in-depth analysis reveals that the hazard chain caused by this failure contained three stages, namely dam failure, mudflow, and the hyperconcentrated flow in the Paraopeba River. The variation characteristics of turbidity of the Rio Paraopeba River after the disaster have also been investigated using high-resolution remote sensing images, followed by a qualitative analysis of the impacts on the downstream reservoir of the Retiro Baixo Plant that was over 300 km away from the dam failure origin. It is believed that, on the one hand, the lack of dam stability management at the maintenance stage was the main cause of this disaster. On the other hand, the abundant antecedent precipitation caused by extreme weather events should be a critical triggering factor. Furthermore, the spatiotemporal pattern mining of global tailings dam failures revealed that the Brumadinho dam disaster belonged to a Consecutive Hot Spot area, suggesting that the regular drainage inspection, risk assessment, monitoring, and early warning of tailings dam in Consecutive Hot Spot areas still need to be strengthened for disaster mitigation.

Funder

the National Natural Science Foundation of China

the Chinese Academy of Sciences through the International partnership program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3