Concentrations and Species of Mercury in Municipal Sludge of Selected Chinese Cities and Potential Mercury Emissions From Sludge Treatment and Disposal

Author:

Liu Jing,Lin Li,Wang Keyun,Ding Rui,Xie Zhouqing,Zhang Pengfei

Abstract

Municipal sewage has been identified as an important source of mercury (Hg) to the environment, and sewage sludge is the major sink of sewage-borne Hg. Knowledge of Hg species in sludge and potential Hg emissions during sludge treatment/disposal is still limited. A survey on Hg concentrations and species in sewage sludge of 16 provinces and municipalities in China was conducted. Hg was detected in all sewage sludge samples, with total Hg (THg) concentrations ranging from 0.3 to 7.7 mg/kg. Results from sequential chemical extractions (SCE) indicated that sludge-borne Hg mainly occurred in the form of Hg sulfide, with a small amount of organo-chelated Hg (Hg-OM) and HgO, and a negligible amount of soluble Hg. Thermal decomposition results indicated that Hg is generally released from sludge at a temperature range of 200–400°C, with the highest release at 250–350°C (38%–86%), consistent with the thermal decomposition of HgS, Hg-OM, and HgO. THg in sewage samples under ventilation at room temperature remained constant over a month period, indicating negligible Hg emission under such conditions. The mass loading of sludge-borne THg in China for year 2019 was estimated to be 30 tons, about 3.6% of the total anthropogenic THg released (including direct and secondary anthropogenic releases) in China. At the temperature range for sludge incineration, sludge carbonization, and sludge/brick/cement production, most of the Hg in sludge will be released to air due to thermal decomposition of Hg compounds. As such, Hg-capture systems are essential in sludge treatment processes involving high temperatures.

Funder

Ministry of Education

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference80 articles.

1. Distribution of Mercury and Trace Elements in a Soil Profile from Almadén Area;Alberto,2004

2. Is There a Future for Sequential Chemical Extraction?;Bacon;Analyst,2008

3. Mercury Mass Balance at a Wastewater Treatment Plant Employing Sludge Incineration with Offgas Mercury Control;Balogh;Sci. Total Environ.,2008

4. Mercury Pathways in Municipal Wastewater Treatment Plants;Balogh;Water Air Soil Pollut.,1995

5. Thermal Hydrolysis for Sewage Treatment: A Critical Review;Barber;Water Res.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3