Abstract
AbstractBased on the most recently published data, we definitively estimated that the annual global production of sewage sludge may rise from ~ 53 million tons dry solids currently to ~ 160 million tons if global wastewater were to be treated to a similar level as in the 27 European Union countries/UK. It is widely accepted that the agricultural application is a beneficial way to recycle the abundant organic matter and plant nutrients in sewage sludge. However, land application may need to be limited due to the presence of metals. This work presents a meticulous and systematic review of the sources, concentrations, partitioning, and speciation of metals in sewage sludge in order to determine the impacts of sludge application on metal behavior in soils. It identifies that industrial wastewater, domestic wastewater and urban runoff are main sources of metals in sludge. It shows conventional treatment processes generally result in the partitioning of over 70% of metals from wastewater into primary and secondary sludge. Typically, the order of metal concentrations in sewage sludge is Zn > Cu > Cr ≈ Pb ≈ Ni > Cd. The proportion of these metals that are easily mobilised is highest for Zn and Ni, followed by Cd and Cu, then Pb and Cr. Sludge application to land will lead to elevated metal concentrations, and potentially to short-term changes to the dominant metal species in soils. However, the speciation of sludge-associated metals will change over time due to interactions with plant roots and soil minerals and as organic matter is mineralised by rhizo-microbiome.
Funder
China Scholarship Council
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Applied Microbiology and Biotechnology,Environmental Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献