A multiscale geographically weighted regression kriging method for spatial downscaling of satellite-based ozone datasets

Author:

Cheng Shuang,Zhang Guoqiao,Yang Xuexi,Lei Bingfeng

Abstract

Accurate monitoring of ozone (O3) concentrations by remote sensing is essential for achieving pollution control and ecological protection. However, the existing O3 remote sensing data with a low spatial resolution do not facilitate fine-grained studies of small-scale urban clusters. In this study, the multiscale geographically weighted regression kriging (MGWRK) method was used to spatially downscale O3 remote sensing products (10 km × 10 km). Downscaling factors were selected from meteorological factors and vegetation, aerosol optical thickness (AOD), and air pollutant emission inventory data. Spatial heterogeneity and scale differences among the factors were considered and compared via multiple regression kriging (MLRK) and geographically weighted regression kriging (GWRK) to generate 1-km annual and seasonal O3 remote sensing products. The results showed that I) the downscaling accuracy of each model can be expressed as MGWRK > GWRK > MLRK; the local downscaling model yields data that are more consistent with the actual spatial distribution of O3 after considering the spatial heterogeneity of the influencing factors; and the downscaled annual and seasonal data exhibit satisfactory spatial texture characteristics and consistency with the original spatial distribution of O3, while the distribution boundary problem of image elements is eliminated. II) Nitrogen oxide (NOx) and volatile organic compound emissions and temperature exhibit strong positive correlations with O3, while wind speed, humidity, the normalized difference vegetation index, and AOD indicate weak positive correlations with O3. Moreover, precipitation exhibits a weak negative correlation with O3. III) The coefficient of determination (R2) of the 1-km resolution annual O3 concentration data after downscaling based on the MGWRK model reaches 0.93, while the RRMSE and MAE values are only 3% and 1.86, respectively, with a coefficient of variation of 9.55%; the downscaling accuracy of the seasonal O3 concentration data is higher in summer and winter than during the other seasons, with R2 greater than 0.85, further confirming the spatial and temporal downscaling advantages of the MGWRK model for O3 in the Chang-Zhu-Tan city cluster. This further corroborates the feasibility of the MGWRK model for spatial and temporal O3 downscaling in the Chang-Zhu-Tan urban area.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3