A Downscaling Method of TRMM Satellite Precipitation Based on Geographically Neural Network Weighted Regression: A Case Study in Sichuan Province, China

Author:

Zheng Ge12,Zhang Nan3,Zhang Laifu12,Chen Yijun12,Wu Sensen12ORCID

Affiliation:

1. School of Earth Sciences, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China

2. Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310028, China

3. China Highway Engineering Consulting Group Company Ltd., Beijing 100089, China

Abstract

Spatial downscaling is an effective way to improve the spatial resolution of precipitation products. However, the existing methods often fail to adequately consider the spatial heterogeneity and complex nonlinearity between precipitation and surface parameters, resulting in poor downscaling performance and inaccurate expression of regional details. In this study, we propose a precipitation downscaling model based on geographically neural network weighted regression (GNNWR), which integrates normalized difference vegetation index, digital elevation model, land surface temperature, and slope data to address spatial heterogeneity and complex nonlinearity. We explored the spatiotemporal trends of precipitation in the Sichuan region over the past two decades. The results show that the GNNWR model outperforms common methods in downscaling precipitation for the four distinct seasons, achieving a maximum R2 of 0.972 and a minimum RMSE of 3.551 mm. Overall, precipitation in Sichuan Province exhibits a significant increasing trend from 2001 to 2019, with a spatial distribution pattern of low in the northwest and high in the southeast. The GNNWR downscaled results exhibit the strongest correlation with observed data and provide a more accurate representation of precipitation spatial patterns. Our findings suggest that GNNWR is a practical method for precipitation downscaling considering its high accuracy and model performance.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Deep-time Digital Earth (DDE) Big Science Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3