Multi-Temporal SAR Interferometry for Vertical Displacement Monitoring from Space of Tengiz Oil Reservoir Using SENTINEL-1 and COSMO-SKYMED Satellite Missions

Author:

Bayramov Emil,Buchroithner Manfred,Kada Martin,Duisenbiyev Askar,Zhuniskenov Yermukhan

Abstract

This study focused on the quantitative assessment of the vertical displacement velocities retrieved using Sentinel-1 and Cosmo-SkyMed synthetic aperture radar images for the Tengiz oilfield. Tengiz oilfield was selected as a study area because of its historically reported continuous subsidence and limited up-to-date studies during recent years. The small baseline subset time-series technique was used for the interferometric processing of radar images acquired for the period of 2018–2020. The geospatial and statistical analyses allowed to determine the existing hotspots of the subsidence processes induced by oil extraction in the study area. Ground deformation measurements derived from the Sentinel-1 and COSMO-SkyMed satellite missions showed that the Tengiz oilfield continuously subsided during 2018–2020 with the maximum annual vertical displacement velocity around −77.4 mm/y and −71.5 mm/y, respectively. The vertical displacement velocities derived from the Sentinel-1 and the COSMO-SkyMed images showed a good statistical relationship with R2≥0.73 and RMSE ≤3.68 mm. The cumulative vertical displacement derived from both satellites for the most subsiding location also showed a good statistical relationship with R2 equal to 0.97 and RMSE = ± 4.69. The observed relative differences of measurements by both satellites were acceptable to determine the ongoing vertical surface displacement processes in the study area. These studies demonstrated a practical novelty for the petroleum industry in terms of the comparative assessment of surface displacement measurements using time-series of medium-resolution Sentinel-1 and high-resolution COSMO-SkyMed radar images.

Funder

Nazarbayev University

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3