Investigating Subsidence in the Bursa Plain, Turkey, Using Ascending and Descending Sentinel-1 Satellite Data

Author:

Aslan GokhanORCID,Cakir ZiyadinORCID,Lasserre CécileORCID,Renard François

Abstract

We characterize and monitor subsidence of the Bursa Plain (southern Marmara region of Turkey), which has been interpreted as resulting from tectonic motions in the region. We quantify the subsidence using Interferometric Synthetic Aperture Radar (InSAR) time-series analysis. The Stanford Method for Persistent Scatterers InSAR package (StaMPS) is employed to process series of Sentinel 1 A-B radar images acquired between 2014 and 2017 along both ascending and descending orbits. The vertical velocity field obtained after decomposition of line-of-sight velocity fields on the two tracks reveals that the Bursa plain is subsiding at rates up to 25 mm/yr. The most prominent subsidence signal in the basin forms an east-west elongated ellipse of deformation in the east, and is bounded by a Quaternary alluvial plain undergoing average vertical subsidence at ~10 mm/yr. Another localized subsidence signal is located 5 km north of the city, following the Bursa alluvial fan, and is subsiding at velocities up to 25 mm/yr. The comparison between temporal variations of the subsiding surface displacements and variations of the water pressure head in the aquifer allows estimation of the compressibility of the aquifer, α . It falls in the range of 0.5 × 10 − 6 − 2 × 10 − 6 Pa−1, which corresponds to typical values for clay and sand sediments. We find a clear correlation between subsidence patterns and the lithology, suggesting a strong lithological control over subsidence. In addition, the maximum rate of ground subsidence occurs where agricultural activity relies on groundwater exploitation. The InSAR time series within the observation period is well correlated with changes in the depth of the ground water. These observations indicate that the recent acceleration of subsidence is mainly due to anthropogenic activities rather than tectonic motion.

Funder

TUBITAK

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3