Time Zero for Net Zero: A Coal Mine Baseline for Decarbonising Heat

Author:

Monaghan Alison A.,Bateson Luke,Boyce Adrian J.,Burnside Neil M.,Chambers Rebecca,de Rezende Julia R.,Dunnet Eilidh,Everett Paul A.,Gilfillan Stuart M. V.,Jibrin Muhammad S.,Johnson Gareth,Luckett Richard,MacAllister Donald John,MacDonald Alan M.,Moreau John W.,Newsome Laura,Novellino Alessandro,Palumbo-Roe Barbara,Pereira Ryan,Smith Douglas,Spence Mike J.,Starcher Vanessa,Taylor-Curran Helen,Vane Christopher H.,Wagner Thomas,Walls David B.

Abstract

Mine water geothermal energy could provide sustainable heating, cooling and storage to assist in the decarbonisation of heat and achieving Net Zero carbon emissions. However, mined environments are highly complex and we currently lack the understanding to confidently enable a widespread, cost-effective deployment of the technology. Extensive and repeated use of the mined subsurface as a thermal source/store and the optimisation of operational infrastructure encompasses a range of scientific and technical challenges that require broad partnerships to address. We present emerging results of a pioneering multidisciplinary collaboration formed around an at-scale mine water geothermal research infrastructure in Glasgow, United Kingdom. Focused on a mined, urban environment, a range of approaches have been applied to both characterise the environmental change before geothermal activities to generate “time zero” datasets, and to develop novel monitoring tools for cost-effective and environmentally-sound geothermal operations. Time zero soil chemistry, ground gas, surface water and groundwater characterisation, together with ground motion and seismic monitoring, document ongoing seasonal and temporal variability that can be considered typical of a post-industrial, urban environment underlain by abandoned, flooded coal mine workings. In addition, over 550 water, rock and gas samples collected during borehole drilling and testing underwent diverse geochemical, isotopic and microbiological analysis. Initial results indicate a connected subsurface with modern groundwater, and resolve distinctive chemical, organic carbon and stable isotope signatures from different horizons that offer promise as a basis for monitoring methods. Biogeochemical interactions of sulphur, carbon and iron, plus indications of microbially-mediated mineral oxidation/reduction reactions require further investigation for long term operation. Integration of the wide array of time zero observations and understanding of coupled subsurface processes has significant potential to inform development of efficient and resilient geothermal infrastructure and to inform the design of fit-for-purpose monitoring approaches in the quest towards meeting Net Zero targets.

Funder

Natural Environment Research Council

Publisher

Frontiers Media SA

Reference129 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3