Constraining the Geochemical Fingerprints of Gases from the UK Carboniferous Coal Measures at the Glasgow Geoenergy Observatories Field Site, Scotland

Author:

Chambers Rebecca M.,Johnson Gareth,Boyce Adrian J.,Gilfillan Stuart M. V.

Abstract

Usage of thermal energy contained in abandoned, flooded, coal mines has the potential to contribute to low carbon heating or cooling supply and assist in meeting net-zero carbon emission targets. However, hazardous ground gases, such as CH4 and CO2, can be found naturally in superficial deposits, coal bearing strata and abandoned mines. Determining the presence, magnitude, and origin of subsurface gases, and how their geochemical fingerprints evolve within the shallow subsurface is vital to developing an understanding of how to manage the risk posed by ground gases in geoenergy technology development. Here, we present the first CH4 and CO2 concentration-depth profiles and stable isotope (δ13CCH4, δ13CCO2, and δDCH4) profiles obtained from UK mine workings, through analysis of headspace gas samples degassed from cores and chippings collected during construction of the Glasgow Observatory. These are used to investigate the variability of gas fingerprints with depth within unmined Carboniferous coal measures and Glasgow coal mine workings. Stable isotope compositions of CH413CCH4 = −73.4‰ to −14.3‰; δ13CCO2 = −29‰ to −6.1‰; δDCH4 = −277‰ to −88‰) provide evidence of a biogenic source, with carbonate reduction being the primary pathway of CH4 production. Gas samples collected at depths of 63–79 m exhibit enrichments in 13CCH4 and 2H, indicating the oxidative consumption of CH4. This correlates with their proximity to the Glasgow Ell mine workings, which will have increased exposure to O2 from the atmosphere as a result of mining activities. CO2 gas is more abundant than CH4 throughout the succession in all three boreholes, exhibiting high δ13CCO2 values relative to the CH4 present. Gases from unmined bedrock exhibit the highest δ13CCO2 values, with samples from near-surface superficial deposits having the lowest δ13CCO2 values. δ13CCO2 values become progressively lower at shallower depths (above 90 m), which can be explained by the increasing influence of shallow groundwaters containing a mixture of dissolved marine carbonate minerals (∼0‰) and soil gas CO2 (−26‰) as depth decreases. Our findings provide an insight into the variability of mine derived gases within 200 m of the surface, providing an important ‘time-zero’ record of the site, which is required in the design of monitoring approaches.

Funder

Natural Environment Research Council

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3