Development of a data science CURE in microbiology using publicly available microbiome datasets

Author:

Sun Evelyn,König Stephan G.,Cirstea Mihai,Hallam Steven J.,Graves Marcia L.,Oliver David C.

Abstract

Scientific and technological advances within the life sciences have enabled the generation of very large datasets that must be processed, stored, and managed computationally. Researchers increasingly require data science skills to work with these datasets at scale in order to convert information into actionable insights, and undergraduate educators have started to adapt pedagogies to fulfill this need. Course-based undergraduate research experiences (CUREs) have emerged as a leading model for providing large numbers of students with authentic research experiences including data science. Originally designed around wet-lab research experiences, CURE models have proliferated and diversified globally to accommodate a broad range of academic disciplines. Within microbiology, diversity metrics derived from microbiome sequence information have become standard data products in research. In some cases, researchers have deposited data in publicly accessible repositories, providing opportunities for reproducibility and comparative analysis. In 2020, with the onset of the COVID-19 pandemic and concomitant shift to remote learning, the University of British Columbia set out to develop an online data science CURE in microbiology. A team of faculty with collective domain expertise in microbiome research and CUREs developed and implemented a data science CURE in which teams of students learn to work with large publicly available datasets, develop and execute a novel scientific research project, and disseminate their findings in the online Undergraduate Journal of Experimental Microbiology and Immunology. Analysis of the resulting student-authored research articles, including comments from peer reviews conducted by subject matter experts, demonstrate high levels of learning effectiveness. Here, we describe core insights from course development and implementation based on a reverse course design model. Our approach to course design may be applicable to the development of other data science CUREs.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3