Gut microbiota is a potential factor in shaping phenotypic variation in larvae and adults of female bumble bees

Author:

Guo Baodi,Tang Jiao,Ding Guiling,Mashilingi Shibonage K.,Huang Jiaxing,An Jiandong

Abstract

Host symbionts are often considered an essential part of the host phenotype, influencing host growth and development. Bumble bee is an ideal model for investigating the relationship between microbiota and phenotypes. Variations in life history across bumble bees may influence the community composition of gut microbiota, which in turn influences phenotypes. In this study, we explored gut microbiota from four development stages (early-instar larvae, 1st instar; mid-instar larvae, 5th instar; late-instar larvae, 9th instar; and adults) of workers and queens in the bumble bee Bombus terrestris using the full-length 16S rRNA sequencing technology. The results showed that morphological indices (weight and head capsule) were significantly different between workers and queens from 5th instar larvae (p < 0.01). The alpha and beta diversities of gut microbiota were similar between workers and queens in two groups: early instar and mid instar larvae. However, the alpha diversity was significantly different in late instar larvae or adults. The relative abundance of three main phyla of bacteria (Cyanobacteria, Proteobacteria, and Firmicutes) and two genera (Snodgrassella and Lactobacillus) were significantly different (p < 0.01) between workers and queens in late instar larvae or adults. Also, we found that age significantly affected the microbial alpha diversity as the Shannon and ASVs indices differed significantly among the four development stages. Our study suggests that the 5th instar larval stage can be used to judge the morphology of workers or queens in bumble bees. The key microbes differing in phenotypes may be involved in regulating phenotypic variations.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference53 articles.

1. Reproductive plasticity in bumblebee workers (Bombus terrestris)—reversion from fertility to sterility under queen influence;Alaux;Behav. Ecol. Sociobiol.,2007

2. A new method for non-parametric multivariate analysis of variance;Anderson;Austral Ecol.,2001

3. Social behavior and the microbiome;Archie;Curr. Opin. Behav. Sci.,2015

4. 16S rDNA metabarcoding of the bacterial community associated with workers of Pheidole rugaticeps Emery (hymenoptera: Formicidae);Ashigar;J. Asia Pac. Entomol.,2021

5. Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae;Aupinel;Bull. Insectol.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3