Shotgun Metagenomics Reveals Minor Micro“bee”omes Diversity Defining Differences between Larvae and Pupae Brood Combs

Author:

Smutin Daniil12,Taldaev Amir134,Lebedev Egor1ORCID,Adonin Leonid13ORCID

Affiliation:

1. Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia

2. Faculty of Information Technology and Programming, ITMO University, St. Petersburg 197101, Russia

3. Institute of Biomedical Chemistry, Moscow 119121, Russia

4. Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia

Abstract

Bees represent not only a valuable asset in agriculture, but also serve as a model organism within contemporary microbiology. The metagenomic composition of the bee superorganism has been substantially characterized. Nevertheless, traditional cultural methods served as the approach to studying brood combs in the past. Indeed, the comb microbiome may contribute to determining larval caste differentiation and hive immunity. To further this understanding, we conducted a shotgun sequencing analysis of the brood comb microbiome. While we found certain similarities regarding species diversity, it exhibits significant differentiation from all previously described hive metagenomes. Many microbiome members maintain a relatively constant ratio, yet taxa with the highest abundance level tend to be ephemeral. More than 90% of classified metagenomes were Gammaproteobacteria, Bacilli and Actinobacteria genetic signatures. Jaccard dissimilarity between samples based on bacteria genus classifications hesitate from 0.63 to 0.77, which for shotgun sequencing indicates a high consistency in bacterial composition. Concurrently, we identified antagonistic relationships between certain bacterial clusters. The presence of genes related to antibiotic synthesis and antibiotic resistance suggests potential mechanisms underlying the stability of comb microbiomes. Differences between pupal and larval combs emerge in the total metagenome, while taxa with the highest abundance remained consistent. All this suggests that a key role in the functioning of the comb microbiome is played by minor biodiversity, the function of which remains to be established experimentally.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3