Changes in phosphorus mobilization and community assembly of bacterial and fungal communities in rice rhizosphere under phosphate deficiency

Author:

Sun Ruibo,Zhang Wenjie,Liu Yangbing,Yun Wenjing,Luo Bingbing,Chai Rushan,Zhang Chaochun,Xiang Xingjia,Su Xiaofeng

Abstract

Rhizosphere microorganisms are closely associated with phosphorus (P) uptake in plants and are considered potential agents to mitigate P shortage. However, the mechanisms of rhizospheric microbial community assembly under P deficiency have yet to be elucidated. In this study, bacterial and fungal communities in rice rhizosphere and their P mobilization potential under high (+P) and low (−P) concentrations of P were investigated. Bacterial and fungal community structures were significantly different between −P and +P treatments. And both bacterial and fungal P-mobilizing taxa were enriched in-P treatment; however, the proportion of P-mobilizing agents in the fungal community was markedly greater than that in the bacterial community. A culture experiment confirmed that microbial phosphate solubilizing capacity was significantly higher in −P treatment compared with that in +P treatment. −P treatment lowered bacterial diversity in rice rhizosphere but increased fungal diversity. Further analysis demonstrated that the contribution of deterministic processes in governing bacterial community assembly was strengthened under P deficiency but was largely weakened in shaping the fungal community. These results highlighted that enriching P-mobilizing microbes in the rhizosphere is a vital way for rice to cope with P deficiency, and that fungi contribute considerably to P mobilization in rice rhizosphere. Findings from the study provide novel insights into the assembly of the rhizosphere microbiome under P deficiency and this will facilitate the development of rhizosphere microbial regulation strategies to increase nutrient uptake in plants.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference60 articles.

1. Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils;Adhya;Curr. Sci.,2015

2. Global phosphorus shortage will be aggravated by soil erosion;Alewell;Nat. Commun.,2020

3. Microbial phosphorus solubilization and its potential for use in sustainable agriculture;Alori;Front. Microbiol.,2017

4. Unravelling the role of rhizosphere microbiome and root traits in organic phosphorus mobilization for sustainable phosphorus fertilization. A review;Amadou;Agronomy,2021

5. The rhizosphere revisited: root microbiomics;Bakker;Front. Plant Sci.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3