Sex-specific competition differently regulates the response of the rhizosphere fungal community of Hippophae rhamnoides–A dioecious plant, under Mn stress

Author:

Lin Yuhu,Fang Ling,Chen Hao,Sun Xudong,He Yunxiao,Duan Baoli,Li Rui,Cao Chuntao,Chen Juan

Abstract

In this study, we investigated the soil physicochemical parameters and responses of rhizospheric fungal communities of Hippophae rhamnoides to Mn stress under different sexual competition patterns. The results showed that competition significantly affects soil physicochemical properties, enzyme activity, and rhizosphere-associated fungal community structures. Under Mn stress, soils with intersexual competition had higher levels of N supply than those with the intrasexual competition. Moreover, fungal communities under intersexual interaction were more positive to Mn stress than intrasexual interaction. Under intrasexual competition, female plants had higher total phosphorus content, neutral phosphatase activity, and relative abundance of symbiotic fungi in soils to obtain phosphorus nutrients to alleviate Mn stress. In contrast, male plants had relatively stable fungal communities in soils. In the intersexual competition, rhizosphere fungal diversity and relative abundance of saprophytic fungi in male plants were significantly higher than in female plants under Mn stress. In addition, female plants showed greater plasticity in the response of rhizosphere microorganisms to their neighbors of different sexes. The microbial composition in soils of female plants varied more than male plants between intrasexual and intersexual competition. These results indicated that sex-specific competition and neighbor effects regulate the microbial community structure and function of dioecious plants under heavy metal stress, which might affect nutrient cycling and phytoremediation potential in heavy metal-contaminated soils.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3