Base Composition and Host Adaptation of the SARS-CoV-2: Insight From the Codon Usage Perspective

Author:

Roy Ayan,Guo Fucheng,Singh Bhupender,Gupta Shelly,Paul Karan,Chen Xiaoyuan,Sharma Neeta Raj,Jaishee Nishika,Irwin David M.,Shen Yongyi

Abstract

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading rapidly all over the world and has raised grave concern globally. The present research aims to conduct a robust base compositional analysis of SARS-CoV-2 to reveal adaptive intricacies to the human host. Multivariate statistical analysis revealed a complex interplay of various factors including compositional constraint, natural selection, length of viral coding sequences, hydropathicity, and aromaticity of the viral gene products that are operational to codon usage patterns, with compositional bias being the most crucial determinant. UpG and CpA dinucleotides were found to be highly preferred whereas, CpG dinucleotide was mostly avoided in SARS-CoV-2, a pattern consistent with the human host. Strict avoidance of the CpG dinucleotide might be attributed to a strategy for evading a human immune response. A lower degree of adaptation of SARS-CoV-2 to the human host, compared to Middle East respiratory syndrome (MERS) coronavirus and SARS-CoV, might be indicative of its milder clinical severity and progression contrasted to SARS and MERS. Similar patterns of enhanced adaptation between viral isolates from intermediate and human hosts, contrasted with those isolated from the natural bat reservoir, signifies an indispensable role of the intermediate host in transmission dynamics and spillover events of the virus to human populations. The information regarding avoided codon pairs in SARS-CoV-2, as conferred by the present analysis, promises to be useful for the design of vaccines employing codon pair deoptimization based synthetic attenuated virus engineering.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3