Author:
Ren Ze,Luo Wei,Zhang Cheng
Abstract
Thermokarst lakes are widely distributed in cold regions as a result of ice-rich permafrost thaw. Disentangling the biogeography of abundant and rare microbes is essential to understanding the environmental influences, assembly mechanisms, and responses to climate change of bacterial communities in thermokarst lakes. In light of this, we assessed the abundant and rare bacterial subcommunities in sediments from thermokarst lakes across the Qinghai-Tibet Plateau (QTP). The operational taxonomic unit (OTU) richness was more strongly associated with location and climate factors for abundant subcommunities, while more strongly associated with physicochemical variables for rare subcommunities. The relative abundance of abundant and rare taxa showed opposite patterns with abundant taxa having greater relative abundance at higher latitude and pH, but at lower mean annual precipitation and nutrients. Both the abundant and rare subcommunities had a clear distribution pattern along the gradient of latitude and mean annual precipitation. Abundant subcommunities were dominantly shaped by dispersal limitation processes (80.9%), while rare subcommunities were shaped almost equally by deterministic (47.3%) and stochastic (52.7%) processes. The balance between stochastic and deterministic processes was strongly environmentally adjusted for rare subcommunities, while not associated with environmental changes for abundant subcommunities. The results shed light on biogeography patterns and structuring mechanisms of bacterial communities in thermokarst lakes, improving our ability to predict the influences of future climate change on these lakes.
Subject
Microbiology (medical),Microbiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献