Biogeography and diversity patterns of abundant and rare bacterial communities in paddy soils along middle and lower Yangtze River

Author:

Zhu Xiancan12ORCID,Hu Minghui2,Wang Xiaoli2,Zhang Ya2,Du Dongsheng2

Affiliation:

1. Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐Founded by Anhui Province and Ministry of Education Anhui Normal University Wuhu China

2. Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences Anhui Normal University Wuhu China

Abstract

AbstractThe middle and lower reaches of the Yangtze River serve as principal rice production bases in China, yet the biodiversity and ecological processes of bacterial communities in paddy soils are not well understood. This study explores the diversity, composition, ecological function, and assembly processes of abundant and rare bacterial communities in paddy soils. A total of 129 paddy soil samples from 43 sites along the middle and lower reaches of the Yangtze River were collected and analyzed using NovaSeq sequencing. The results showed that the dominant phylum for both abundant and rare taxa was Proteobacteria, with a greater relative abundance of the abundant taxa. The diversity of the abundant community was lower than that of the rare community. Soil properties and geographic variables explained more of the variation in the abundant community than in the rare community. The rare community exhibited a significant distance‐decay relationship. The assembly of the abundant community was more influenced by stochastic processes, although both the abundant and rare communities were governed by stochastic processes. It is concluded that both abundant and rare bacterial communities exhibit differing biogeographic patterns, yet they undergo similar ecological processes in the paddy soils along the middle and lower reaches of the Yangtze River. These observations offer a theoretical framework for a deeper comprehension of the function of both abundant and rare bacteria, as well as the development and preservation of soil bacterial diversity within agricultural ecosystems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3