Effect of Ethanol Vapor Treatment on the Growth of Alternaria alternata and Botrytis cinerea and Defense-Related Enzymes of Fungi-Inoculated Blueberry During Storage

Author:

Ji Yaru,Hu Wenzhong,Liao Jia,Xiu Zhilong,Jiang Aili,Yang Xiaozhe,Guan Yuge,Feng Ke,Saren Gaowa

Abstract

The aim of the present study was to investigate the effects of ethanol vapor on the inhibition of Alternaria alternata and Botrytis cinerea in postharvest blueberry and the induction of defense-related enzymes (DREs) activities in fungi-inoculated blueberries stored at 0±0.5°C for 16days. Results indicated that ethanol vapor markedly inhibited the mycelial growth of A. alternata and B. cinerea in a dose-dependent manner, with inhibition rates of 9.1% (250μlL−1), 36.4% (500μlL−1), and 5.5% (1,000μlL−1) on A. alternata and 14.2% (250μlL−1), 44.7% (500μlL−1), and 76.6% (1,000μlL−1) on B. cinerea, respectively. Meanwhile, ethanol vapor also enhanced the activities of DREs in fungi-inoculated blueberries, including β-1,3-glucanase (GLU), chitinase (CHI), phenylalnine ammonialyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO). In particular, 500μlL−1 ethanol vapor increased the activities of DREs by 84.7% (GLU), 88.0% (CHI), 37.9% (PAL), 85.5% (POD), and 247.0% (PPO) in A. alternata-inoculated blueberries and 103.8% (GLU), 271.1% (CHI), 41.1% (PAL), 148.3% (POD), and 74.4% (PPO) in B. cinerea-inoculated blueberries, respectively. But, the activity of PPO was decreased by 55.2 and 31.9% in 500μlL−1 ethanol-treated blueberries inoculated with A. alternata and B. cinerea, respectively, after 8days of storage. Moreover, the surface structure and ultrastructure of 500μlL−1 ethanol-treated blueberry fruit cells were more integrated than those of other treatments. The findings of the present study suggest that ethanol could be used as an activator of defense responses in blueberry against Alternaria and Botrytis rots, by activating DREs, having practical application value in the preservation of postharvest fruit and vegetables.

Funder

National Key Research and Development Program

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3