Study on the Bacterial Communities of the Biofilms on Titanium, Aluminum, and Copper Alloys at 5,772 m Undersea in Yap Trench

Author:

Zhai Xiaofan,Cao Wei,Zhang Yimeng,Ju Peng,Chen Juna,Duan Jizhou,Sun Chengjun

Abstract

Biofilms formed on metal surfaces strongly affect metallic instruments serving in marine environments. However, due to sampling difficulty, less has been known about the bacterial communities of the biofilm on metallic surfaces in hadal environments, so the failure process of these deep-sea metallic instruments influenced by microbial communities could be hardly predicted. In this research, seven alloys, including titanium, aluminum, and copper alloys, were exposed in Yap Trench hadal environment for 1 year. Thus, the communities of the biofilms formed on metallic surfaces at 5,772 m undersea in Yap Trench were initially reported in previous studies. Then, 16S rRNA gene sequencing was performed to visualize the in situ bacterial communities of the biofilms formed on titanium, aluminum, and copper alloys at 5,772 m undersea in Yap Trench. It was found that Proteobacteria was the dominant phylum in all samples, but distinct genera were discovered on various alloys. The titanium alloy provided a suitable substrate for a mutualistic symbiotic biofilm with abundant bacterial richness. Aluminum alloys without copper components showed the least bacterial richness and formed a cold-adapted and oligotrophic-adapted biofilm containing the genera Sulfurimonas and PS1 Clade, while copper-present alloys showed relatively high bacterial richness with copper-resistant or even copper-utilizing biofilms constituting the genera Stenotrophomonas, Burkholderia-Caballeronia-Paraburkholderia, and Achromobacter on the surfaces. Furthermore, among all the element components contained in alloys investigated in this research, copper element showed the strongest influences on the composition and function of microbial communities in the biofilms formed on various metallic surfaces.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3