Effective Treatment of Acid Mine Drainage with Microbial Fuel Cells: An Emphasis on Typical Energy Substrates

Author:

Ai Chenbing,Yan Zhang,Hou Shanshan,Zheng Xiaoya,Zeng Zichao,Amanze Charles,Dai Zhimin,Chai Liyuan,Qiu Guanzhou,Zeng Weimin

Abstract

Acid mine drainage (AMD), characterized by a high concentration of heavy metals, poses a threat to the ecosystem and human health. Bioelectrochemical system (BES) is a promising technology for the simultaneous treatment of organic wastewater and recovery of metal ions from AMD. Different kinds of organic wastewater usually contain different predominant organic chemicals. However, the effect of different energy substrates on AMD treatment and microbial communities of BES remains largely unknown. Here, results showed that different energy substrates (such as glucose, acetate, ethanol, or lactate) affected the startup, maximum voltage output, power density, coulombic efficiency, and microbial communities of the microbial fuel cell (MFC). Compared with the maximum voltage output (55 mV) obtained by glucose-fed-MFC, much higher maximum voltage output (187 to 212 mV) was achieved by MFCs fed individually with other energy substrates. Acetate-fed-MFC showed the highest power density (195.07 mW/m2), followed by lactate (98.63 mW/m2), ethanol (52.02 mW/m2), and glucose (3.23 mW/m2). Microbial community analysis indicated that the microbial communities of anodic electroactive biofilms changed with different energy substrates. The unclassified_f_Enterobacteriaceae (87.48%) was predominant in glucose-fed-MFC, while Geobacter species only accounted for 0.63%. The genera of Methanobrevibacter (23.70%), Burkholderia-Paraburkholderia (23.47%), and Geobacter (11.90%) were the major genera enriched in the ethanol-fed-MFC. Geobacter was most predominant in MFC enriched by lactate (45.28%) or acetate (49.72%). Results showed that the abundance of exoelectrogens Geobacter species correlated to electricity-generation capacities of electroactive biofilms. Electroactive biofilms enriched with acetate, lactate, or ethanol effectively recovered all Cu2+ ion (349 mg/L) of simulated AMD in a cathodic chamber within 53 h by reduction as Cu0 on the cathode. However, only 34.65% of the total Cu2+ ion was removed in glucose-fed-MFC by precipitation with anions and cations rather than Cu0 on the cathode.

Funder

Central South University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3