Revealing Microbiome Structure and Assembly Process in Three Rhizocompartments of Achyranthes bidentata Under Continuous Monoculture Regimes

Author:

Wang Juanying,Wu Hongmiao,Wu Linkun,Liu Ye,Letuma Puleng,Qin Xianjin,Chen Ting,Rensing Christopher,Lin Sheng,Lin Wenxiong

Abstract

The complex composition and interaction of root-associated microbes are critical to plant health and performance. In this study, we presented a detailed characterization of three rhizocompartment (rhizosphere, rhizoplane, and root) microbiomes of Achyranthes bidentata under different years of consecutive monoculture by deep sequencing in order to determine keystone microorganisms via co-occurrence network analysis. The network analysis showed that multiple consecutive monoculture (MCM, represented 5Y and 10Y) soils generated some distinct beneficial bacterial taxa such as Bacillus, Fictibacillus, Bradyrhizobium, Shinella, and Herbaspirillum. For fungi, Mortierella substituted for Fusarium in occupying an important position in different rhizocompartments under A. bidentate monoculture. Quantitative PCR analysis confirmed a significant increase in Bacillus, Pseudomonas, and Burkholderia spp. The results of the inoculation assay showed that addition of beneficial bacteria Bacillus subtilis 74 and Bacillus halodurans 75 significantly increased the root length and fresh weight of A. bidentata. Furthermore, three types of phytosterones, as the main allochemicals, were identified both in the rhizosphere soil and in culture medium under sterile conditions by LC-MS/MS. When looking at in vitro interactions, it was found that phytosterones displayed a positive interaction with dominant beneficial species (Bacillus amyloliquefaciens 4 and B. halodurans 75) and had a negative effect on the presence of the pathogenic fungi Fusarium solani and Fusarium oxysporum. Overall, this study demonstrated that consecutive monoculture of A. bidentata can alter the bacterial and fungal community by secreting root exudates, leading to recruitment of beneficial microbes and replacement of plant-specific pathogenic fungi with plant beneficial fungi.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3