Effects of continuous cropping on fungal community diversity and soil metabolites in soybean roots

Author:

He Dexin1,Yao Xingdong12ORCID,Zhang Pengyu3,Liu Wenbo1,Huang Junxia1,Sun Hexiang1,Wang Nan1,Zhang Xuejing1,Wang Haiying1,Zhang Huijun1,Ao Xue1,Xie Futi1ORCID

Affiliation:

1. Soybean Research Institute, Shenyang Agricultural University , Shenyang, China

2. Postdoctoral Station of Agricultural Resources and Environment, Land and Environment College, Shenyang Agricultural University , Shenyang, China

3. Inner Mongolia Agronomy and Animal Husbandry Technology Extension Center , Hohhot, Inner Mongolia, China

Abstract

ABSTRACT Microbial community imbalance is the main cause of soybean intercropping, but the mechanism of soybean soil fungal community diversity change induced by continuous cropping is still unclear. This study analyzes the fungal community diversity and the change of fungal communities in compartments of different root systems of intercropped soybeans by high-throughput sequencing (endosphere, rhizoplane, and rhizosphere) between continuous cropping and maize-soybean rotation. The results showed that the community composition and the diversity of compartments of different root systems of intercropped soybeans are different, and fungal diversities showed a decreasing trend from rhizosphere to endosphere. Continuous cropping significantly increased fungal community diversities in different root compartments and changed their formation, enrichment, and depletion processes. Continuous cropping brings about the enrichment of soil pathogens, but only partial soil pathogens could colonize from the rhizosphere to the endosphere. All these suggested that root compartments had selective effects on root-associated fungal community diversity. Additionally, metabolomics assay revealed that continuous cropping soybean markedly altered soil metabolic profiling. Correlation analysis results showed that fungal community diversity was significantly correlated with soil metabolites. To sum up, under different planting patterns, the diversity and the functional mode of soybean soil microbial community have changed. Continuous cropping has increased the abundance of pathogenic fungi in soybean soil, resulting in changes in the correlation between soil fungi and metabolites, and then changed the soil metabolic spectrum. IMPORTANCE Soybean yield can be affected by soybean soil fungal communities in different tillage patterns. Soybean is an important food crop with great significance worldwide. Continuous cultivation resulted in soil nutrient deficiencies, disordered metabolism of root exudates, fungal pathogen accumulation, and an altered microbial community, which brought a drop in soybean output. In this study, taking the soybean agroecosystem in northeast China, we revealed the microbial ecology and soil metabolites spectrum, especially the diversity and composition of soil fungi and the correlation of pathogenic fungi, and discussed the mechanisms and the measures of alleviating the obstacles.

Funder

Project of Scientific Research in Education Department of Liaoning Province, China

Project of Science and technology of Shenyang, China

Project of Scientific Research in Education Department of Liaoning province, China

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Cell Biology,Microbiology (medical),Genetics,General Immunology and Microbiology,Ecology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3