Seasonal Variation of the Atmospheric Bacterial Community in the Greenlandic High Arctic Is Influenced by Weather Events and Local and Distant Sources

Author:

Jensen Lasse Z.,Glasius Marianne,Gryning Sven-Erik,Massling Andreas,Finster Kai,Šantl-Temkiv Tina

Abstract

The Arctic is a hot spot for climate change with potentially large consequences on a global scale. Aerosols, including bioaerosols, are important players in regulating the heat balance through direct interaction with sunlight and indirectly, through inducing cloud formation. Airborne bacteria are the major bioaerosols with some species producing the most potent ice nucleating compounds known, which are implicated in the formation of ice in clouds. Little is known about the numbers and dynamics of airborne bacteria in the Arctic and even less about their seasonal variability. We collected aerosol samples and wet deposition samples in spring 2015 and summer 2016, at the Villum Research Station in Northeast Greenland. We used amplicon sequencing and qPCR targeting the 16S rRNA genes to assess the quantities and composition of the DNA and cDNA-level bacterial community. We found a clear seasonal variation in the atmospheric bacterial community, which is likely due to variable sources and meteorology. In early spring, the atmospheric bacterial community was dominated by taxa originating from temperate and Subarctic regions and arriving at the sampling site through long-range transport. We observed an efficient washout of the aerosolized bacterial cells during a snowstorm, which was followed by very low concentrations of bacteria in the atmosphere during the consecutive 4 weeks. We suggest that this is because in late spring, the long-range transport ceased, and the local sources which comprised only of ice and snow surfaces were weak resulting in low bacterial concentrations. This was supported by observed changes in the chemical composition of aerosols. In summer, the air bacterial community was confined to local sources such as soil, plant material and melting sea-ice. Aerosolized and deposited Cyanobacteria in spring had a high activity potential, implying their activity in the atmosphere or in surface snow. Overall, we show how the composition of bacterial aerosols in the high Arctic varies on a seasonal scale, identify their potential sources, demonstrate how their community sizes varies in time, investigate their diversity and determine their activity potential during and post Arctic haze.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3