Identification of Microbiota Biomarkers With Orthologous Gene Annotation for Type 2 Diabetes

Author:

Zhang Yu-Hang,Guo Wei,Zeng Tao,Zhang ShiQi,Chen Lei,Gamarra Margarita,Mansour Romany F.,Escorcia-Gutierrez José,Huang Tao,Cai Yu-Dong

Abstract

Type 2 diabetes (T2D) is a systematic chronic metabolic condition with abnormal sugar metabolism dysfunction, and its complications are the most harmful to human beings and may be life-threatening after long-term durations. Considering the high incidence and severity at late stage, researchers have been focusing on the identification of specific biomarkers and potential drug targets for T2D at the genomic, epigenomic, and transcriptomic levels. Microbes participate in the pathogenesis of multiple metabolic diseases including diabetes. However, the related studies are still non-systematic and lack the functional exploration on identified microbes. To fill this gap between gut microbiome and diabetes study, we first introduced eggNOG database and KEGG ORTHOLOGY (KO) database for orthologous (protein/gene) annotation of microbiota. Two datasets with these annotations were employed, which were analyzed by multiple machine-learning models for identifying significant microbiota biomarkers of T2D. The powerful feature selection method, Max-Relevance and Min-Redundancy (mRMR), was first applied to the datasets, resulting in a feature list for each dataset. Then, the list was fed into the incremental feature selection (IFS), incorporating support vector machine (SVM) as the classification algorithm, to extract essential annotations and build efficient classifiers. This study not only revealed potential pathological factors for diabetes at the microbiome level but also provided us new candidates for drug development against diabetes.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3