Gene-based microbiome representation enhances host phenotype classification

Author:

Deschênes Thomas123,Tohoundjona Fred Wilfried Elom12,Plante Pier-Luc123,Di Marzo Vincenzo12456ORCID,Raymond Frédéric1234ORCID

Affiliation:

1. Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval , Québec, Canada

2. Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND) , Quebec City, Quebec, Canada

3. Institut Intelligence et Données, Université Laval , Québec, Canada

4. École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval , Québec, Canada

5. Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) , Québec, Canada

6. Département de médecine, Faculté de Médecine, Université Laval , Québec, Canada

Abstract

ABSTRACT With the concomitant advances in both the microbiome and machine learning fields, the gut microbiome has become of great interest for the potential discovery of biomarkers to be used in the classification of the host health status. Shotgun metagenomics data derived from the human microbiome is composed of a high-dimensional set of microbial features. The use of such complex data for the modeling of host-microbiome interactions remains a challenge as retaining de novo content yields a highly granular set of microbial features. In this study, we compared the prediction performances of machine learning approaches according to different types of data representations derived from shotgun metagenomics. These representations include commonly used taxonomic and functional profiles and the more granular gene cluster approach. For the five case-control datasets used in this study (Type 2 diabetes, obesity, liver cirrhosis, colorectal cancer, and inflammatory bowel disease), gene-based approaches, whether used alone or in combination with reference-based data types, allowed improved or similar classification performances as the taxonomic and functional profiles. In addition, we show that using subsets of gene families from specific functional categories of genes highlight the importance of these functions on the host phenotype. This study demonstrates that both reference-free microbiome representations and curated metagenomic annotations can provide relevant representations for machine learning based on metagenomic data. IMPORTANCE Data representation is an essential part of machine learning performance when using metagenomic data. In this work, we show that different microbiome representations provide varied host phenotype classification performance depending on the dataset. In classification tasks, untargeted microbiome gene content can provide similar or improved classification compared to taxonomical profiling. Feature selection based on biological function also improves classification performance for some pathologies. Function-based feature selection combined with interpretable machine learning algorithms can generate new hypotheses that can potentially be assayed mechanistically. This work thus proposes new approaches to represent microbiome data for machine learning that can potentiate the findings associated with metagenomic data.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Gouvernement du Canada | Canadian Institutes of Health Research

Compute Canada

Canada Excellence Research Chairs, Government of Canada

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3