Contribution of Maternal and Paternal Transmission to Bacterial Colonization in Nematostella vectensis

Author:

Baldassarre Laura,Levy Shani,Bar-Shalom Rinat,Steindler Laura,Lotan Tamar,Fraune Sebastian

Abstract

Microbial communities confer multiple beneficial effects to their multicellular hosts. To evaluate the evolutionary and ecological implications of the animal-microbe interactions, it is essential to understand how bacterial colonization is secured and maintained during the transition from one generation to the next. However, the mechanisms of symbiont transmission are poorly studied for many species, especially in marine environments, where the surrounding water constitutes an additional source of microbes. Nematostella vectensis, an estuarine cnidarian, has recently emerged as model organism for studies on host-microbes interactions. Here, we use this model organism to study the transmission of bacterial colonizers, evaluating the contribution of parental and environmental transmission to the establishment of bacterial communities of the offspring. We induced spawning in adult male and female polyps of N. vectensis and used their gametes for five individual fertilization experiments. While embryos developed into primary polyps, we sampled each developmental stage and its corresponding medium samples. By analyzing the microbial community compositions of all samples through 16S rRNA gene amplicon sequencing, we showed that all host tissues harbor microbiota significantly different from the surrounding medium. Interestingly, oocytes and sperms are associated with distinct bacterial communities, indicating the specific vertical transmission of bacterial colonizers by the gametes. These differences were consistent among all the five families analyzed. By overlapping the identified bacterial ASVs associated with gametes, offspring and parents, we identified specific bacterial ASVs that are well supported candidates for vertical transmission via mothers and fathers. This is the first study investigating bacteria transmission in N. vectensis, and among few on marine spawners that do not brood larvae. Our results shed light on the consistent yet distinct maternal and paternal transfer of bacterial symbionts along the different life stages and generations of an aquatic invertebrate.

Funder

Deutsche Forschungsgemeinschaft

Human Frontier Science Program

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3