Specificity of Associations between Bacteria and the Coral Pocillopora meandrina during Early Development

Author:

Apprill Amy,Marlow Heather Q.,Martindale Mark Q.,Rappé Michael S.

Abstract

ABSTRACTRelationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coralPocillopora meandrinawas investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of theAlphaproteobacteria, aPseudoalteromonasspecies of theGammaproteobacteria, and aSynechococcusspecies of theCyanobacteriaphylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination ofP. meandrinaplanulae by fluorescencein situhybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains ofPseudoalteromonasand Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade andSynechococcusdid not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3