Effect of Arbuscular Mycorrhizal Fungi Isolated From Rock Phosphate Mine and Agricultural Soil on the Improvement of Wheat Plant Growth

Author:

Hazzoumi Zakaria,Azaroual Salah Eddine,El Mernissi Najib,Zaroual Youssef,Duponnois Robin,Bouizgarne Brahim,Meftah Kadmiri Issam

Abstract

The improvement of plant growth and yield becomes crucial to feed the rising world population, especially in harsh conditions, drought, salt stress, lack of nutrition, and many other challenges. To cope with these stresses, plants developed an adaptation strategy (mycorrhiza), which is an efficient way to reinforce their growth and resistance. For this purpose, we studied the influence of mycorrhizal fungi isolated from a natural rock phosphate mine in the vicinity of some native plants and agricultural soil to assess their capacity in increasing the growth, nutritional profile improvement, and biochemical parameters in the inoculated wheat plants. Results showed a high diversity of isolated arbuscular mycorrhizal fungi (AMF) spores in the agricultural soil, and less diversity in the natural phosphate samples, where three main genera were identified: glomus, gigaspora, and acaulospora. The chlorophyll content increased by 116% in the native inoculum (NM) flowed by Glomus sp2 from agricultural soil (98%) compared to non-mycorrhized plants, which significantly impact the growth and plant biomass (an increase of 90 and 73%, respectively). The same rate of change was shown on total phenolic compounds with an increase of 64% in the plants inoculated with Glomus sp2 in the presence of TSP, compared to the non-mycorrhized plants. In conclusion, the inoculation of wheat plants with AMF spores improved plants’ growth via the increase in the density of the root system, which implies better assimilation of nutrients, especially in mycorrhizal plants with phosphorus fertilization regime, triple superphosphate (TSP) or natural rock phosphate (RP). This improvement of the physiological and biochemical parameters (chlorophyll contents and phenolic compound) of the treated plants reflected the positive impact of AMF, especially those originating from RP. AMF in phosphate mine could be an important source of inoculum to improve plant nutrient efficiency with the direct use of RP as fertilizer.

Funder

Fondation OCP

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3