Does pre-enrichment of anodes with acetate to select for Geobacter spp. enhance performance of microbial fuel cells when switched to more complex substrates?

Author:

Christgen Beate,Spurr Martin,Milner Edward M.,Izadi Paniz,McCann Clare,Yu Eileen,Curtis Tom,Scott Keith,Head Ian M.

Abstract

Many factors affect the performance of microbial fuel cells (MFCs). Considerable attention has been given to the impact of cell configuration and materials on MFC performance. Much less work has been done on the impact of the anode microbiota, particularly in the context of using complex substrates as fuel. One strategy to improve MFC performance on complex substrates such as wastewater, is to pre-enrich the anode with known, efficient electrogens, such as Geobacter spp. The implication of this strategy is that the electrogens are the limiting factor in MFCs fed complex substrates and the organisms feeding the electrogens through hydrolysis and fermentation are not limiting. We conducted a systematic test of this strategy and the assumptions associated with it. Microbial fuel cells were enriched using three different substrates (acetate, synthetic wastewater and real domestic wastewater) and three different inocula (Activated Sludge, Tyne River sediment, effluent from an MFC). Reactors were either enriched on complex substrates from the start or were initially fed acetate to enrich for Geobacter spp. before switching to synthetic or real wastewater. Pre-enrichment on acetate increased the relative abundance of Geobacter spp. in MFCs that were switched to complex substrates compared to MFCs that had been fed the complex substrates from the beginning of the experiment (wastewater-fed MFCs - 21.9 ± 1.7% Geobacter spp.; acetate-enriched MFCs, fed wastewater - 34.9 ± 6.7% Geobacter spp.; Synthetic wastewater fed MFCs – 42.5 ± 3.7% Geobacter spp.; acetate-enriched synthetic wastewater-fed MFCs - 47.3 ± 3.9% Geobacter spp.). However, acetate pre-enrichment did not translate into significant improvements in cell voltage, maximum current density, maximum power density or substrate removal efficiency. Nevertheless, coulombic efficiency (CE) was higher in MFCs pre-enriched on acetate when complex substrates were fed following acetate enrichment (wastewater-fed MFCs – CE = 22.0 ± 6.2%; acetate-enriched MFCs, fed wastewater – CE =58.5 ± 3.5%; Synthetic wastewater fed MFCs – CE = 22.0 ± 3.2%; acetate-enriched synthetic wastewater-fed MFCs – 28.7 ± 4.2%.) The relative abundance of Geobacter ssp. and CE represents the average of the nine replicate reactors inoculated with three different inocula for each substrate. Efforts to improve the performance of anodic microbial communities in MFCs utilizing complex organic substrates should therefore focus on enhancing the activity of organisms driving hydrolysis and fermentation rather the terminal-oxidizing electrogens.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3