Long-distance electron transport occurs globally in marine sediments
-
Published:2017-02-10
Issue:3
Volume:14
Page:683-701
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Burdorf Laurine D. W., Tramper Anton, Seitaj Dorina, Meire LorenzORCID, Hidalgo-Martinez Silvia, Zetsche Eva-Maria, Boschker Henricus T. S., Meysman Filip J. R.
Abstract
Abstract. Recently, long filamentous bacteria have been reported conducting electrons over centimetre distances in marine sediments. These so-called cable bacteria perform an electrogenic form of sulfur oxidation, whereby long-distance electron transport links sulfide oxidation in deeper sediment horizons to oxygen reduction in the upper millimetres of the sediment. Electrogenic sulfur oxidation exerts a strong impact on the local sediment biogeochemistry, but it is currently unknown how prevalent the process is within the seafloor. Here we provide a state-of-the-art assessment of its global distribution by combining new field observations with previous reports from the literature. This synthesis demonstrates that electrogenic sulfur oxidation, and hence microbial long-distance electron transport, is a widespread phenomenon in the present-day seafloor. The process is found in coastal sediments within different climate zones (off the Netherlands, Greenland, the USA, Australia) and thrives on a range of different coastal habitats (estuaries, salt marshes, mangroves, coastal hypoxic basins, intertidal flats). The combination of a widespread occurrence and a strong local geochemical imprint suggests that electrogenic sulfur oxidation could be an important, and hitherto overlooked, component of the marine cycle of carbon, sulfur and other elements.
Funder
European Research Council
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference57 articles.
1. Baco, A. R., Rowden, A. A., Levin, L. A., Smith, C. R., and Bowden, D. A.: Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin, Mar. Geol., 272, 251–259, https://doi.org/10.1016/j.margeo.2009.06.015, 2010. 2. Bergfeld, C.: Macrofaunal community pattern in an intertidal sandflat: Effects of organic enrichment via biodeposition by mussel beds, First results, Senckenberg, Maritima, 29, 23–27, https://doi.org/10.1007/BF03043114, 1999. 3. Bjerg, J. T., Damgaard, L. R., Holm, S. A., Schramm, A., and Nielsen, L. P.: Motility of Electric Cable Bacteria, Appl. Environ. Microb., 82, 3816–3821, https://doi.org/10.1128/AEM.01038-16, 2016. 4. Breslin, V. T., Sañudo-Wilhelmy, S. A., and Sanudo-Wilhelmy, S. A.: High Spatial Resolution Sampling of Metals in the Sediment and Water Column in Port Jefferson Harbor, New York, Estuaries, 22, 669–680, https://doi.org/10.2307/1353054, 1999. 5. Burdorf, L. D. W., Hidalgo-Martinez, S., Cook, P. L. M., and Meysman, F. J. R.: Long-distance electron transport by cable bacteria in mangrove sediments, Mar. Ecol.-Prog. Ser., 545, 1–8, https://doi.org/10.3354/meps11635, 2016.
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|