Fusion Protein Cleavage Site Containing Three Basic Amino Acids Attenuates Newcastle Disease Virus in Chicken Embryos: Use as an in ovo Vaccine

Author:

Feng Helong,Shang Yu,Li Li,Sun Xiuxiu,Fan Sanling,Ren Xiangfei,Xu Yingying,Zeng Zhe,Hu Xingxing,Cheng Guofu,Wen Guoyuan

Abstract

In ovo vaccination is an attractive immunization strategy for the poultry industry. However, although most live Newcastle disease virus (NDV) vaccine strains, such as LaSota and V4, can be used after hatching, they are pathogenic to chicken embryos when administered in ovo. We have previously reported that NDV strain TS09-C is a safe in ovo vaccine in specific-pathogen-free and commercial chicken embryos because it is attenuated in chicken embryos. However, the molecular basis of its attenuation is poorly understood. In this study, we firstly evaluated the safety of chimeric NDV strains after exchanging genes between strains TS09-C and LaSota as in ovo vaccines, and demonstrated that the attenuation of NDV in chicken embryos was dependent upon the origin of the fusion (F) protein. Next, by comparing the F protein sequences of TS09-C strain with those of LaSota and V4 strain, the R115 in cleavage site and F379 were found to be unique to TS09-C strain. The mutant viruses were generated by substituting one or two amino acids at position 115 and 379 in the F protein, and their safety as in ovo vaccine was evaluated. Mutation in residue 379 did not affect the viral embryonic pathogenicity. While the mutant virus rTS-2B (R115G mutation based on the backbone of TS09-C strain) with two basic amino acids in F cleavage site, was pathogenic to chicken embryos and similar with rLaSota in its tissue tropism, differing markedly from rTS09-C with three basic amino acids in F cleavage site. Together, these findings indicate that the F protein cleavage site containing three basic amino acids is the crucial determinant of the attenuation of TS09-C in chicken embryos. This study extends our understanding of the pathogenicity of NDV in chicken embryos and should expedite the development of in ovo vaccines against NDV.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3