A New Vaccination Method Based on Phage NgoΦ6 and Its Phagemid Derivatives

Author:

Piekarowicz Andrzej,Kłyż Aneta,Stein Daniel C.

Abstract

Phagemid particles based on the Neisseria gonorrhoeae filamentous phage NgoΦ6 were used as a vaccine delivery system. We demonstrate that the host proteins incorporated into/associated with these particles can be encoded by chromosomal genes of the host bacterium or from plasmids able to replicate as an autonomous entity in the phagemid host. Phagemid particles were prepared from three types of cells, namely, Salmonella enterica ser. Typhimurium [pBSKS::Φ6fm(ST)] containing phagemid genome as an autonomous plasmid, Haemophilus influenzae Rd containing phagemid [pBSKS::Φ6fm(Hin)] integrated into the chromosome, and S. enterica ser. Typhimurium [pMPMT6::Φ6fm(ST)] containing an additional plasmid, pE1 HCV, encoding the Hepatitis C virus envelope glycoprotein E1. Approximately 200 μg of purified phage particles was used to immunize rabbits. The phagemid particles prepared from these three strains all elicited a large amount of IgG antibodies that were able to recognize bacterial host cells and proteins, as determined by ELISA and FACS analysis. The amount of specific anti-S. enterica ser. Typhimurium, anti-H. influenzae, and anti-E1 HCV antibodies elicited by vaccination was 170 μg/ml for anti-Salmonella, 80 μg/ml for anti-H. influenzae, and 65 μg/ml for anti-E1 HCV. Taken in toto, these data suggest that classical phage display methods have underestimated the potential for filamentous phage as a novel immunogen delivery system.

Funder

National Institutes of Health

Ministerstwo Edukacji i Nauki

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference28 articles.

1. Phage display derived monoclonal antibodies: from bench to bedside.;Alfaleh;Front. Immunol.,2020

2. Phage-based vaccines.;Bao;Adv. Drug Delivery Rev.,2019

3. Concepts in antibody phage display.;Carmen;Briefings Funct. Genomics Proteomics,2002

4. Immunogenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage.;de la Cruz;J. Biol. Chem.,1988

5. Phages in vaccine design and immunity; mechanisms and mysteries.;de Vries;Curr. Opin. Biotechnol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3