Generation of Tetracycline and Rifamycin Resistant Chlamydia Suis Recombinants

Author:

Marti Hanna,Bommana Sankhya,Read Timothy D.,Pesch Theresa,Prähauser Barbara,Dean Deborah,Borel Nicole

Abstract

The Chlamydiaceae are a family of obligate intracellular, gram-negative bacteria known to readily exchange DNA by homologous recombination upon co-culture in vitro, allowing the transfer of antibiotic resistance residing on the chlamydial chromosome. Among all the obligate intracellular bacteria, only Chlamydia (C.) suis naturally integrated a tetracycline resistance gene into its chromosome. Therefore, in order to further investigate the readiness of Chlamydia to exchange DNA and especially antibiotic resistance, C. suis is an excellent model to advance existing co-culture protocols allowing the identification of factors crucial to promote homologous recombination in vitro. With this strategy, we co-cultured tetracycline-resistant with rifamycin group-resistant C. suis, which resulted in an allover recombination efficiency of 28%. We found that simultaneous selection is crucial to increase the number of recombinants, that sub-inhibitory concentrations of tetracycline inhibit rather than promote the selection of double-resistant recombinants, and identified a recombination-deficient C. suis field isolate, strain SWA-110 (1-28b). While tetracycline resistance was detected in field isolates, rifampicin/rifamycin resistance (RifR) had to be induced in vitro. Here, we describe the protocol with which RifR C. suis strains were generated and confirmed. Subsequent whole-genome sequencing then revealed that G530E and D461A mutations in rpoB, a gene encoding for the β-subunit of the bacterial RNA polymerase (RNAP), was likely responsible for rifampicin and rifamycin resistance, respectively. Finally, whole-genome sequencing of recombinants obtained by co-culture revealed that recombinants picked from the same plate may be sibling clones and confirmed C. suis genome plasticity by revealing variable, apparently non-specific areas of recombination.

Funder

Universität Zürich

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3