Effect of lactobacilli inoculation on protein and carbohydrate fractions, ensiling characteristics and bacterial community of alfalfa silage

Author:

Huo Wenjie,Zhang Yujuan,Zhang Luyao,Shen Chen,Chen Lei,Liu Qiang,Zhang Shuanlin,Wang Cong,Guo Gang

Abstract

IntroductionAlfalfa (Medicago sativa L.) silage is one of the major forages with high protein for ruminants.MethodsThe objective of this study was to investigate the effects of lactobacilli inoculants on protein and carbohydrate fractions, ensiling characteristics and bacterial community of alfalfa silage. Wilted alfalfa (35% dry matter) was inoculated without (control) or with Lactobacillus coryniformis, Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus pentosus and ensiled for 7, 15, and 60 days.Results and discussionSilage inoculated with L. pentosus was superior to L. coryniformis, L. casei, L. plantarum in improving the fermentation quality of alfalfa silage, as indicated by the lowest ammonia nitrogen content and silage pH during ensiling. There was minor difference in water soluble carbohydrates content among all silages, but L. pentosus inoculants was more efficient at using xylose to produce lactic acid, with lower xylose content and higher lactic acid content than the other inoculants. Compared with the control, L. pentosus inoculants did not affect true protein content of silage, but increased the proportions of buffer soluble protein and acid detergent soluble protein. The L. pentosus inoculants reduced the bacterial diversity In alfalfa silage with lower Shannon, Chao1, and Ace indices, and promoted relative abundance of lactobacillus and decreased the relative abundance of Pediococcus compared with the control. As well as L. pentosus inoculants up-regulated amino acid, carbohydrate, energy, terpenoids, and polypeptides metabolism, and promoted lactic acid fermentation process. In summary, the fermentation quality and nutrient preservation of alfalfa silage were efficiently improved by inoculated with L. pentosus.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3