Francisella tularensis subsp. holarctica wild-type is able to colonize natural aquatic ex vivo biofilms

Author:

Schaudinn Christoph,Rydzewski Kerstin,Meister Beate,Grunow Roland,Heuner Klaus

Abstract

Biofilms are a matrix-associated lifestyle of microbial communities, often enabling survivability and persistence of such bacteria. The objective of this study was to investigate the survival of the wild-type strain A-271 of Francisella tularensis subsp. holarctica (Fth) in a natural aquatic ex vivo biofilm. To that purpose, we allowed Fth A-271 to produce its own biofilm on solid surfaces but also to colonize naturally formed biofilms from aquatic habitats, which were infected with Francisella in the laboratory. The survival rates of the bacteria in biofilms were compared to those of planktonic bacteria as a function of the employed culture condition. It could be shown by light- and electron microscopy that Fth is able to form a complex, matrix-associated biofilm. The biofilm form of Francisella showed longer cultivability on agar plates in natural water when compared to planktonic (free-living) bacteria. Be it as a part of the existing ex vivo biofilm or free-floating above as planktonic bacteria, more than 80% of Francisella were not only able to survive under these conditions for 28 days, but even managed to establish microcolonies and areas with their own exclusive biofilm architecture within the ex vivo biofilm. Here, we can demonstrate for the first time that a Francisella tularensis wild-type strain (Type B) is able to successfully colonize an aquatic multi-species ex vivo biofilm. It is worthwhile to speculate that Fth might become more persistent in the environment when it forms its own biofilm or integrates in an existing one. Multi-species biofilms have been shown to be more resistant against stress compared to single-species biofilms. This may have an important impact on the long-term survival of Francisella in aquatic habitats and infection cycles in nature.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3