Phenotypic and transcriptional characterization of F. tularensis LVS during transition into a viable but non-culturable state

Author:

Cantlay Stuart,Garrison Nicole L.,Patterson Rachelle,Wagner Kassey,Kirk Zoei,Fan Jun,Primerano Donald A.,Sullivan Mara L. G.,Franks Jonathan M.,Stolz Donna B.,Horzempa Joseph

Abstract

Francisella tularensis is a gram-negative, intracellular pathogen which can cause serious, potentially fatal, illness in humans. Species of F. tularensis are found across the Northern Hemisphere and can infect a broad range of host species, including humans. Factors affecting the persistence of F. tularensis in the environment and its epidemiology are not well understood, however, the ability of F. tularensis to enter a viable but non-culturable state (VBNC) may be important. A broad range of bacteria, including many pathogens, have been observed to enter the VBNC state in response to stressful environmental conditions, such as nutrient limitation, osmotic or oxidative stress or low temperature. To investigate the transition into the VBNC state for F. tularensis, we analyzed the attenuated live vaccine strain, F. tularensis LVS grown under standard laboratory conditions. We found that F. tularensis LVS rapidly and spontaneously enters a VBNC state in broth culture at 37°C and that this transition coincides with morphological differentiation of the cells. The VBNC bacteria retained an ability to interact with both murine macrophages and human erythrocytes in in vitro assays and were insensitive to treatment with gentamicin. Finally, we present the first transcriptomic analysis of VBNC F. tularensis, which revealed clear differences in gene expression, and we identify sets of differentially regulated genes which are specific to the VBNC state. Identification of these VBNC specific genes will pave the way for future research aimed at dissecting the molecular mechanisms driving entry into the VBNC state.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3