Proteomining-Based Elucidation of Natural Product Biosynthetic Pathways in Streptomyces

Author:

Linardi Darwin,She Weiyi,Zhang Qian,Yu Yi,Qian Pei-Yuan,Lam Henry

Abstract

The genus Streptomyces is known to harbor numerous biosynthetic gene clusters (BGCs) of potential utility in synthetic biology applications. However, it is often difficult to link uncharacterized BGCs with the secondary metabolites they produce. Proteomining refers to the strategy of identifying active BGCs by correlating changes in protein expression with the production of secondary metabolites of interest. In this study, we devised a shotgun proteomics-based workflow to identify active BGCs during fermentation when a variety of compounds are being produced. Mycelia harvested during the non-producing growth phase served as the background. Proteins that were differentially expressed were clustered based on the proximity of the genes in the genome to highlight active BGCs systematically from label-free quantitative proteomics data. Our software tool is easy-to-use and requires only 1 point of comparison where natural product biosynthesis was significantly different. We tested our proteomining clustering method on three Streptomyces species producing different compounds. In Streptomyces coelicolor A3(2), we detected the BGCs of calcium-dependent antibiotic, actinorhodin, undecylprodigiosin, and coelimycin P1. In Streptomyces chrestomyceticus BCC24770, 7 BGCs were identified. Among them, we independently re-discovered the type II PKS for albofungin production previously identified by genome mining and tedious heterologous expression experiments. In Streptomyces tenebrarius, 5 BGCs were detected, including the known apramycin and tobramycin BGC as well as a newly discovered caerulomycin A BGC in this species. The production of caerulomycin A was confirmed by LC-MS and the inactivation of the caerulomycin A BGC surprisingly had a significant impact on the secondary metabolite regulation of S. tenebrarius. In conclusion, we developed an unbiased, high throughput proteomics-based method to complement genome mining methods for the identification of biosynthetic pathways in Streptomyces sp.

Funder

Hong Kong Government

Guangzhou Science and Technology Innovation Center

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3