Antifungal activity of the volatile organic compounds produced by Ceratocystis fimbriata strains WSJK-1 and Mby

Author:

Gao Yang,Ren Huan,He Shuqi,Duan Shanquan,Xing Shijun,Li Xue,Huang Qiong

Abstract

Microorganism-produced volatile organic compounds (VOCs) are considered promising environmental-safety fumigants in food preservation. In this study, the VOCs from fungal Ceratocystis fimbriata strains (WSJK-1, Mby) were tested against postharvest fungi Monilinia laxa, Fusarium oxysporum, Monilinia fructicola, Botrytis cinerea, Alternaria solani, and Aspergillus flavus in vitro. The mycelial growth was significantly inhibited, in particular M. fructicola and B. cinerea (76.95, 76.00%), respectively. VOCs were identified by headspace solid-phase microextraction coupled with Gas Chromatography–Mass Spectrometry (HS-SPME-GC–MS); 40 compounds were identified. The antifungal activity of 21 compounds was tested by the minimum inhibitory concentrations (MIC) value. Benzaldehyde, 2-Phenylethanol, and 1-Octen-3-ol showed strong antifungal activity with the MIC in vitro ranging from 0.094 to 0.284 ml L−1 depending on the pathogen tested. The optical microscope showed serious morphological damage, including cell deformation, curling, collapse, and deficiency in mycelial or conidia cell structures treated with C. fimbriata VOCs and pure compounds. In vivo tests, C. fimbriata VOCs decreased brown rot severity in peaches, and compounds Benzaldehyde and 2-Phenylethanol could reduce peach brown rot in peaches at 60 μl L−1. The VOCs produced by C. fimbriata strain have good antifungal effects; low concentration fumigation could control peach brown rot. Its fragrance is fresh, safe, and harmless, and it is possible to replace chemical fumigants. It could be used as a potential biofumigant to control fruit postharvest transportation, storage, and food preservation. To the best of our knowledge, this is the first report on the antifungal activity and biocontrol mechanism of VOCs produced by C. fimbriata.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3