Dynamics of the soil microbial community associated with Morchella cultivation: diversity, assembly mechanism and yield prediction

Author:

Yue Yihong,Hao Haibo,Wang Qian,Xiao Tingting,Zhang Yuchen,Chen Qun,Chen Hui,Zhang Jinjing

Abstract

IntroductionThe artificial cultivation of morels has been a global research focus owing to production variability. Understanding the microbial ecology in cultivated soil is essential to increase morel yield and alleviate pathogen harm.MethodsA total of nine Morchella cultivation experiments in four soil field types, forest, paddy, greenhouse, and orchard in Shanghai city were performed to determine the potential ecological relationship between Morchella growth and soil microbial ecology.ResultsGenerally, significant variation was observed in the soil microbial diversity and composition between the different experimental field types. The niche width analysis indicated that the bacterial habitat niche breadth was significantly greater than the fungal community width, which was further confirmed by a null model that revealed that homogeneous selection could explain 46.26 and 53.64% of the variance in the bacterial and fungal assemblies, respectively. Moreover, the neutral community model revealed that stochastic processes dominate the bacterial community in forests and paddies and both the bacterial and fungal communities in orchard crops, whereas deterministic processes mostly govern the fungal community in forests and paddies and both the bacterial and the fungal communities in greenhouses. Furthermore, co-occurrence patterns were constructed, and the results demonstrated that the dynamics of the soil microbial community are related to fluctuations in soil physicochemical characteristics, especially soil potassium. Importantly, structural equation modeling further demonstrated that the experimental soil type significantly affects the potassium content of the soil, which can directly or indirectly promote Morchella yield by inhibiting soil fungal richness.DiscussionThis was the first study to predict morel yield through soil potassium fertilizer and soil fungal community richness, which provides new insights into deciphering the importance of microbial ecology in morel agroecosystems.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3