Gilvimarinus xylanilyticus sp. nov., a novel 1,3-xylanase-secreting bacterium isolated from a marine green alga

Author:

Zhang Yan-Jiao,Sun Hai-Ning,Xu Ting-Ting,Zhao Dian-Li,Yu Chun-Mei,Zhang Yi,Zhang Xi-Ying,Chen Xiu-Lan,Zhang Yu-Qiang,Zhao Fang

Abstract

1,3-xylan, an important organic carbon in the ocean, is peculiar to marine algae. 1,3-xylanase-secreting bacteria and their extracellular 1,3-xylanases play pivotal roles in the degradation and biomass conversion of 1,3-xylan. However, only a few 1,3-xylanase-secreting bacteria and 1,3-xylanases have been reported. Here, we identified a novel marine bacterium capable of secreting 1,3-xylanases, designated as strain HB14T. Phylogenetic analysis revealed that strain HB14T clustered tightly with known species of the genus Gilvimarinus, showing the highest 16S rRNA gene sequence similarity (97.7%) with the type strain of Gilvimarinus chinensis. Based on phylogenetic, genomic, chemotaxonomic and phenotypic studies, strain HB14T was classified as a representative of a novel species in the genus Gilvimarinus, for which the name Gilvimarinus xylanilyticus sp. nov. was proposed. The type strain is HB14T (=CCTCC AB 2022109T = KCTC 92379T). Four 1,3-xylanases secreted by strain HB14T were identified based on genome and secretome analyses, and the two (Xyn65 and Xyn80) with relatively higher abundance in secretome were successfully expressed in Escherichia coli and biochemically characterized. They showed the highest activity at pH 6.0–7.0 and 40°C and released mainly 1,3-xylobiose and 1,3-xylotriose from 1,3-xylan. These data suggest that strain HB14T acts as a player in marine 1,3-xylan degradation and recycling and that its extracellular 1,3-xylanases may have a good potential in 1,3-xylooligosaccharides preparation.

Funder

National Science Foundation of China

Natural Science Foundation of Shandong Province

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3