Increasing precipitation weakened the negative effects of simulated warming on soil microbial community composition in a semi-arid sandy grassland

Author:

Wang Shaokun,Jiang Xingchi,Li Junyao,Zhao Xueyong,Han Erniu,Qu Hao,Ma Xujun,Lian Jie

Abstract

Soil microbial diversity, composition, and function are sensitive to global change factors. It has been predicted that the temperature and precipitation will increase in northern China. Although many studies have been carried out to reveal how global change factors affect soil microbial biomass and composition in terrestrial ecosystems, it is still unexplored how soil microbial diversity and composition, especially in microbial functional genes, respond to increasing precipitation and warming in a semiarid grassland of northern China. A field experiment was established to simulate warming and increasing precipitation in a temperate semiarid grassland of the Horqin region. Soil bacterial (16S) and fungal (ITS1) diversity, composition, and functional genes were analyzed after two growing seasons. The result showed that warming exerted negative effects on soil microbial diversity, composition, and predicted functional genes associated with carbon and nitrogen cycles. Increasing precipitation did not change soil microbial diversity, but it weakened the negative effects of simulated warming on soil microbial diversity. Bacterial and fungal diversities respond consistently to the global change scenario in semiarid sandy grassland, but the reasons were different for bacteria and fungi. The co-occurrence of warming and increasing precipitation will alleviate the negative effects of global change on biodiversity loss and ecosystem degradation under a predicted climate change scenario in a semiarid grassland. Our results provide evidence that soil microbial diversity, composition, and function changed under climate change conditions, and it will improve the predictive models of the ecological changes of temperate grassland in future climate change scenarios.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3