Author:
Fu Jingyun,Li Ying,Zhao Lihong,Wu Chunguang,He Zengguo
Abstract
Phage therapy was taken as an alternative strategy to antibiotics in shrimp farming for the control of Vibrio species of Vibrio parahaemolyticus and Vibrio alginolyticus, which cause substantial mortality and significant economic losses. In this study, a new Vibrio phage vB_ValM_PVA8 (PVA8), which could efficiently infect pathogenic isolates of V. alginolyticus and V. parahaemolyticus, was isolated from sewage water and characterized by microbiological and in silico genomic analyses. The phage was characterized to be a member of the Straboviridae family with elongated head and contractile tail by transmission electron microscopy. Genome sequencing showed that PVA8 had a 246,348-bp double-stranded DNA genome with a G + C content of 42.6%. It harbored totally 388 putative open reading frames (ORFs), among them 92 (23.71%) assigned to functional genes. Up to 27 transfer RNA (tRNA) genes were found in the genome, and the genes for virulence, antibiotic resistance, and lysogeny were not detected. NCBI genomic blasting results and the phylogenetic analysis based on the sequences of the large terminase subunits and the DNA polymerase indicated that PVA8 shared considerable similarity with Vibrio phage V09 and bacteriophage KVP40. The phage had a latent period of 20 min and a burst size of 309 PFUs/infected cell with the host V. alginolyticus, and it was stable over a broad pH range (4.0–11.0) and a wide temperature span (−80°C to 60°C), respectively, which may benefit its feasibility for phage therapy. In addition, it had the minimum multiplicity of infection (MOI) of 0.0000001, which revealed its strong multiplication capacity. The shrimp cultivation lab trials demonstrated that PVA8 could be applied in treating pathogenic V. parahaemolyticus infection disease of shrimp with a survival rate of 88.89% comparing to that of 34.43% in the infected group, and the pond application trails confirmed that the implementation of PVA8 could rapidly yet effectively reduce the level of the Vibrio. Taken together, PVA8 may be potential to be explored as a promising biological agent for Vibrio control in aquaculture farming industry.
Subject
Microbiology (medical),Microbiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献