Role of fourteen XRE-DUF397 pairs from Streptomyces coelicolor as regulators of antibiotic production and differentiation. New players in a complex regulatory network

Author:

Riascos Carolina,Martínez-Carrasco Ana,Díaz Margarita,Santamaría Ramón I.

Abstract

Bacteria of the genus Streptomyces have a plethora of transcriptional regulators, among which the xenobiotic response element (XRE) plays an important role. In this organism, XRE regulators are often followed downstream by small proteins of unknown function containing a DUF397 domain. It has been proposed that XRE/DUF397 pairs constitute type II toxin–antitoxin (TA) systems. However, previous work carried out by our group has shown that one of these systems is a strong activator of antibiotic production in S. coelicolor and other Streptomyces species. In this work, we have studied the overexpression of fourteen XRE/DUF397 pairs present in the S. coelicolor genome and found that none behave as a type II TA system. Instead, they act as pleiotropic regulators affecting, in a dependent manner, antibiotic production and morphological differentiation on different culture media. After deleting, individually, six XRE/DUF397 pairs (those systems producing more notable phenotypic changes when overexpressed: SCO2246/45, SCO2253/52, SCO4176/77, SCO4678/79, SCO6236/35, and SCO7615/16), the pair SCO7615/16 was identified as producing the most dramatic differences as compared to the wild-type strain. The SCO7615/16 mutant had a different phenotype on each of the media tested (R2YE, LB, NMMP, YEPD, and MSA). In particular, on R2YE and YEPD media, a bald phenotype was observed even after 7 days, with little or no actinorhodin (ACT) production. Lower ACT production was also observed on LB medium, but the bacteria were able to produce aerial mycelium. On NMMP medium, the mutant produced a larger amount of ACT as compared with the wild-type strain.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3